Zum Inhalt springen

Flugnavigation Tutorial

Ich möchte von einer gegebenen Aufgabenstellung bis hin zur fertigen Navigationsaufgabe alle notwendigen Schritte anhand von einer Beispielaufgabe durchrechnen und jeden einzelnen Schritt so gut wie möglich dokumentieren. Ich hole zwischendurch auch weiter aus um die Themen zu schneiden, die für den aktuellen Schritt von Bedeutung sind.

Wir werden mit folgenden Werten arbeiten:

FlugstreckeEDMI (Illertissen) nach
EDPJ (Laichingen) nach
EDNO (Nördlingen) nach
EDMI (Illertissen)
TAS (True Air Speed)160km/h
Wind280° mit 9kt
Spritverbrauch17l/h
DeviationWie im Schaubild (weiter unten)

Was benötigen wir für die Aufgabe?

ICAO 1:500.000 Blatt Stuttgart, Navigationsbesteck bestehend aus:
Zirkel, Druckbleistift, Lineal 30cm, Geometrie-Dreieck und optional ein (DULV) Winkelmesser mit 1:500.000 zu km Skala.

Navigationsbesteck

Im ersten Schritt füllen wir alle gegebenen Angaben in das DULV Formblatt. Dieses füllen wir im Laufe der Navigationsaufgabe komplett aus.

Wir werden die Navigationsaufgabe im metrischen System bearbeiten. Das heißt wir werden Knoten oder Meilen in das entsprechende metrische Äquivalent umrechnen. Keine Geschwindigkeiten in km/h zeichnen und gleichzeitig den Wind in Knoten daneben setzen. Das ist ein beliebtes Problem. Also Achtung!

Die Route in die ICAO Karte einzeichnen

Wir suchen die Flugplätze auf der ICAO 1:500.000 Karte (Blatt Stuttgart) und verbinden die Flugplätze mit einem geraden Strich. Nutzt einen dünnen Bleistift wenn möglich. Ihr übermalt damit zwangsweise auch markante Landschaftsmale. Ist der Strich zu breit habt ihr im Flug ein Problem.

Die eingezeichnete Route EDMI – EDPJ – EDNO – EDMI

Distanzen ausmessen

Entweder Ihr habt ein Lineal, das gleich eine Kilometerskala hat und lest die Kilometer einfach ab oder Ihr nutzt ein normales Lineal und rechnet die Distanz um.

1cm auf der ICAO 1:500.000 Karte entspricht 5km oder 1mm entspricht 0,5km

94mm messe ich auf den ersten Streckenabschnitt. 94 * 0,5 = 47km

Wir füllen unser Formblatt aus:

vonnachEntf.
1EDMIEDPJ47 km
2EDPJ EDNO 76,5 km
3EDNO EDMI76,5 km

True Course (TC) Messen

Wir benötigen den Winkel zwischen unserer gezeichneten Kurslinie und dem geographischen Nordpol. Meridianlinien sind die schwarzen dünngezeichneten Linien auf der ICAO Karte. Diese werden in 0,5er Schritten auf den Karten dargestellt. Am oberen Rand der Karte kann man z.B. den 10. Längengrad ablesen. Der True Course (TC) muss für jeden Streckenabschnitt aus der ICAO Karte einzeln herausgemessen werden.

Längengrad (horizontal) und Breitengrad (vertikal) kreuzen sich in der Mitte.

Wichtig ist, dass die horizontal verlaufenden Meridianlinien als Ausgangspunkt für den Winkel zur Kurslinie genutzt werden. Die Kompasrose richten wir an einer Meridianlinie aus und verschieben sie parallel auf dem Lineal bis wir die Mitte des Flugplatzes treffen. Es ist normal, wenn ihr hier ein paar Mal nachjustieren müsst bis ihr die Mitte des Platzes trefft. Wir lesen im nächsten Bild 308° am Winkelmesser ab.

Das gleiche kann auch mit einem Geometriedreieck gemacht werden. Erst das Dreieck an dem Längengrad anlegen und dann parallel mit einem Lineal auf den Startpunkt verschieben. Der Kurs ergibt sich aus dem Basiswinkel 270° + 38° (vom Geometriedreieck abgelesen) = 308°

vonnachEntf.TC
1EDMIEDPJ47 km308°
2EDPJEDNO76,5 km56,5°
3EDNOEDMI76,5 km201°

True Course (TC) Zeichnen

Der True Course (TC) wird in die Windrose des DULV Navigationsblattes eingezeichnet. Man zeichnet den Kurs vom Nullpunkt in der Mitte am Besten gleich bis zum Rand des Blattes. Den jeweiligen Kurs auch gleich mit der Nummer des Streckenabschnittes am äußeren Ende der Linie versehen (1,2,3). Das hilft uns nachher nicht durcheinander zu kommen.

Außerdem versehen wir nun alle unsere drei Kurslinien mit zwei nach außen zeigenden Pfeilen. Diese Pfeile zeigen uns, dass es sich dabei um den True Course (TC) handelt. Auf dem Formblatt seht ihr oben in der Mitte dazu eine Legende.

Die 1h-Linie zeichnen

Mit der 1h-Linie tragen wir in der Navigationsaufgabe eine Distanz ein, die beschreibt wie weit das Flugzeug innerhalb einer Stunde laut True Airspeed (TAS) zurücklegt.

Die True Airspeed (TAS) ist die Geschwindigkeit, die das Flugzeug in Relation zu der umgebenen Luft zurücklegt. Nicht zu verwechseln mit der die Geschwindigkeit, die das Flugzeug gegenüber dem Grund (Ground Speed / GS) zurücklegt. Im Flug sehen wir an der Geschwindigkeitsanzeige nur die True Airspeed. Wenn Ihr laut Geschwindigkeitsanzeige 200km/h schnell fliegt aber in Wirklichkeit wegen einer Gegenwindkomponente von 50km/h nur 150km/h gegenüber dem Grund zurücklegt ist das ein unglaublich gefährlicher Faktor weil sich damit die Flugzeit auf einmal um 1/4 verlängert und Ihr damit gerade bei längeren Distanzen sehr schnell Spritprobleme bekommen könnt.

Wir wollen die gegebenen 160km/h aus der Vorgabe in das Formblatt übertragen. Jetzt kommt ein kleiner Fallstrick. Eigentlich würde man den Zirkel auf 160mm (16cm) stellen und die Markierung auf den drei Kurslinien vornehmen. Aber unser Formblatt ist nicht groß genug um 16cm vom Nullpunkt aus zeichnen zu können.

Wir müssen jetzt in einem sinnvollen Verhältnis alle Längen verkleinern. Bei 160km/h bieten sich jetzt entweder 1:2 oder 1:3 als Verhältnis an. Wählt das Verhältnis nicht zu groß. Wir werden in einem späteren Schritt auch den Wind mit einzeichnen. Wenn die Streckenlängen wegen einem zu großen Faktor stark schrumpfen haben wir dann ein Problem.

Ich wähle hier 1:2 als Verhältnis. Schreibt das Verhältnis gut sichtbar mit auf das Formblatt. Ab jetzt werden wir alle Längen entsprechend verkürzen oder beim Ablesen verlängern.

Die Geschwindigkeit 160km/h (160mm) verkleinern wir im Faktor 1:2 was 80mm entspricht. Den Zirkel stellen wir auf 80mm

Nun den Zirkel in den Nullpunkt einstechen und an jeder von unseren drei Kurslinie leicht abschlagen. Im Anschluss den Schnittpunkt mit „1h“ versehen. Das hilft uns nachher die 1h-Linie von einer weiteren Linie zu unterscheiden, die in den nächsten Schritten dazu kommt.

Tipp: Bei der kompletten Navigationsaufgabe stellen wir den Zirkel nur auf einen einzigen Wert ein. Wir verändern die Spreizung des Zirkels nicht mehr bis zum Ende der Aufgabe. Legt den Zirkel einfach unverändert bis später zur Seite.

Wind umrechnen

Die Windrichtung und -stärke kommt in der Realität von der Wetterberatung bzw. aus dem Selfbriefing und wird in Knoten (9kt in unserem Fall) angegeben. Wir rechnen nun die Knoten in Stundenkilometer um (1kt = 1,852km/h)

9kt = 16,668km/h

Wind Zeichnen

Wichtig: Wind kommt AUS 280°. Nicht mit den Kurs Graden verwechseln, die IN eine Richtung zeigen.

Wir erinnern uns an den Faktor 1:2 für den wir uns entschieden haben. Aus „16,668mm“ werden nun „8,334mm“ auf dem Formblatt. 8,334mm einzeichnen und am Ende der Linie mit einem Abschlag versehen. Das definiert das Ende der Linie.

Die Windlinie wird mit drei Pfeilen versehen. (Toller Typ, der definiert hat, dass die kürzeste aller Linien die meisten Pfeile bekommen soll ಠ_ಠ)

Winddreieck zeichnen

Jetzt stechen wir mit dem Zirkel (wir haben ihn nicht verändert!) an das Ende der Windlinie ein und schlagen wieder an jeder Kurslinie einmal ab. Diesmal zeichnen wir den Abschlag deutlich länger als die 1h Markierung, dass wir eine deutliche Unterscheidung dazu haben.

Was sehen wir nun? Der Wind sorgt dafür, dass unser zweiter Strich (im unteren Bild) vor der 1h-Linie liegt. Der Wind, der von der Seite kommt verlangsamt unser Flugzeug etwas. Zum Ground Speed kommen wir aber nachher noch.

Am Ende des Windes einstechen und diesmal länger an der Kurslinie abschlagen

Nun verbinden wir das Ende der Windlinie mit unseren neu abgeschlagenen Linien auf der Kurslinie. Diese neuen Linien heißen True Heading (TH) wir versehen sie mit einem Pfeil.

Luvwinkel ablesen

Jetzt messen wir den Winkel zwischen dem True Course und der neu gezeichneten True Heading. Um diesen Winkel müssen wir im Flug nämlich unser Flugzeug korrigieren um die Windkomponente auszugleichen.

Entweder lesen wir den Winkel mit dem Winkelmesser ab oder wir legen das Geometriedreieck mit dem Nullpunkt an der Spitze des Dreiecks und verlängern uns die Linie bis zum Ende des Geometriedreiecks.

vonnachEntf.TCWCA
1EDMIEDPJ47 km308°
2EDPJEDNO76,5 km56,5°
3EDNOEDMI76,5 km201°6,5°

Luvwinkel abziehen oder addieren?

Der Wind würde uns aktuell von unserem Kurs abbringen, wenn wir dem True Course (TC) folgen würden. Das heißt, wir müssen unseren True Course um den Luvwinkel korrigieren. Nur ziehen wir ihn ab oder addieren wir Ihn?

Kommt der Wind in Kursrichtung von links, müssen wir den Kurs um den Luvwinkel reduzieren (-). Der Luvwinkel wird vom Kurs subtrahiert (-)

Kommt der Wind in Kursrichtung von rechts, müssen wir den Kurs um den Luvwinkel vergrößern (+). Der Luvwinkel wird zum Kurs addiert (+).

Wir legen die Kurslinie von uns weg und schauen woher der Wind kommt. IN diese Richtung korrigieren wir unseren Luvwinkel. In dem unterstehenden Fall kommt der Wind von links, deshalb korrigieren wir unseren Kurs auch nach links – in Richtung eines kleineren Kurses. (-3°)

vonnachEntf.TCWCA
1EDMIEDPJ47 km308°(-3°)
2EDPJEDNO76,5 km56,5°(-4°)
3EDNOEDMI76,5 km201°(+6,5°)

True Heading (TH) ausrechnen

Das True Heading (TH) ergibt sich aus der Summe von True Course (TC) und dem Wind Correction Angle (WCA)

Bsp: 308° -3 ° = 305°

vonnachEntf.TCWCATH
1EDMIEDPJ47 km308°(-3°)305°
2EDPJEDNO76,5 km56,5°(-4°)51,5°
3EDNOEDMI76,5 km201°(+6,5°)207,5°

Die Variation

Es gibt nur wenige Orte auf der Erde wo der geographische Norden gleich dem magnetische Norden ist. Wir müssen eine Korrektur vornehmen, die die Differenz zwischen dem geographischen Norden (dem Norden der ICAO Karte) und dem magnetischen Norden (den der Kompass anzeigt) ausgleicht. Das Erdmagnetfeld verändert sich permanent. Deshalb könnt Ihr auf älteren ICAO Karten eine andere Variation sehen. Außerdem ist es nicht unüblich, dass die Landebahn an einem Flugplatz neue Bezeichnungen bekommen. Die Bezeichnung der Landebahnausrichtung orientiert sich an der magnetischen Nordrichtung.

Auf den ICAO Karten finden sich am oberen Rand eine schwarze, dicke gestrichelte Linie an deren Ende die Variation verzeichnet ist. Diese Linie ist die Isogone. Wie man sehen kann verläuft die Linie der gleichen Variation / Ortsmissweisung nicht parallel mit den Längengraden. In Gebieten wo viel Eisen in der Erde ist kann die Isogone auch in kurven verlaufen. In unserem Fall haben wir eine Variation von „3°E (3° Ost)“.

Die Variation ,oben rechts „3°E“

Fliegt man durch Gebiete mit unterschiedlicher Variation muss man die Variation interpolieren oder mehrere Streckenabschnitte rechnen.

Wir wissen nun, dass wir in einem Gebiet mit 3°E Ortsmissweisung fliegen. Die Frage ist nur, addiert man die Variation subtrahiert man diese?

Die Variation muss immer Richtung Norden korrigiert werden. Jedes Grad, das die Variation nach Osten (+) verschiebt müssen wir in Richtung Westen (-) korrigieren und umgekehrt. In unserem Fall befinden wir uns in einem Bereich in dem die Variation 3° Ost beträgt. Wir korrigieren also um 3° nach West.

Unsere 3° Ost Variation befindet sich im „positiven“ Bereich und muss durch Subtraktion (-) auf Neutral-Nord korrigiert werden.

Die Korrektur für unsere Variation beträgt für alle unsere Streckenabschnitte -3°

vonnachEntf.TCWCATHVAR
1EDMIEDPJ47 km308°(-3°)305°-3°
2EDPJEDNO76,5 km56,5°(-4°)51,5°-3°
3EDNOEDMI76,5 km201°(+6,5°)207,5°-3°

Magnetic Heading (MH) berechnen

Der Magnetic Heading ist die Summe aus dem True Heading (TH) und der Variation (VAR).

305° -3° = 302°


vonnachEntf.TCWCATHVARMH
1EDMIEDPJ47 km308°(-3°)305°-3°302°
2EDPJEDNO76,5 km56,5°(-4°)51,5°-3°48,5°
3EDNOEDMI76,5 km201°(+6,5°)207,5°-3°204,5°

Deviation ablesen

Ist euch mal aufgefallen, dass der Kompass im Cockpit so alleine und weit weg von allen anderen Instrumenten montiert wurde?

Der im Flugzeug verbaute Kompass ist vielen Störquellen ausgesetzt. Metallische Teile aus dem Cockpit, Headsets, Arbeitsströme der Instrumente. Wie kann man also trotz dessen genaue Kurse fliegen? Dazu wird eine sogenannte Deviationstabelle erstellt. Diese gibt für Kursbereichsabschnitte einen Korrekturwert vor. Diese Deviationstabelle ist natürlich Flugzeugindividuell und wird aufwändig vermessen. Die Deviationstabelle sollte an dem Kompass angebracht sein.

Wir orientieren uns nun am Magnetic Heading (MH) und interpolieren die Korrekturwerte aus der Deviationstabelle des Flugzeugs.

Deviationstabellen können in zwei Varianten auftreten:

Deviationstabelle von Thogre CC BY-SA 4.0
Deviationstabelle von Thogre CC BY-SA 4.0

vonnachEntf.TCWCATHVARMHDEV
1EDMIEDPJ47 km308°(-3°)305°-3°302°+1°
2EDPJEDNO76,5 km56,5°(-4°)51,5°-3°48,5°+1,5°
3EDNOEDMI76,5 km201°(+6,5°)207,5°-3°204,5°-1,5°

Compas Heading (CH) berechnen

Die Compas Heading (CH) ist die Summe aus Magnetic Heading (MH) und der Deviation (DEV)

302° + 1° Deviation = 303°


vonnachEntf.TCWCATHVARMHDEVCH
1EDMIEDPJ47 km308°(-3°)305°-3°302°+1°303°
2EDPJEDNO76,5 km56,5°(-4°)51,5°-3°48,5°+1,5°50°
3EDNOEDMI76,5 km201°(+6,5°)207,5°-3°204,5°-1,5°203°

Die Compass Heading (CH) ist nun der Kurs den wir für den Streckenabschnitt fliegen, korrigiert um den Wind, die Variation und die Deviation. Mit dem Ergebnis für die Compass Heading (CH) haben wir also unsere ersten Ergebnisse für die Navigationsaufgabe.

Ground Speed (GS)

Je nach Streckenabschnitt haben wir den Wind entweder im Rücken, von Vorne oder von der Seite. Unser Flugzeugs fliegt aber trotzdem in jeder Situation 160km/h laut Instrument. Interessant ist aber wie schnell wir uns gegenüber dem Boden fortbewegen. Diesen Wert können wir aus dem Winddreieck ablesen.

Wir messen die Distanz zwischen dem Nullpunkt unserer Zeichnung und unserem zweiten Zirkelabschlag. Wir messen für Streckenabschnitt 1 72,5mm.

Achtung! jetzt müssen wir unseren 1:2 Faktor wieder in Erinnerung bringen. 72,5mm * 2 = 145mm (145km/h). Der Wind, der in dem Fall von vorne links kommt verlangsamt also unsere Geschwindigkeit, die wir über Grund machen um 15km/h gegenüber einem Windstillen Tag.

72,5mm * 2 = 145mm ≙ 145km/h

vonnachEntf.TCWCATHVARMHDEVCHGS
1EDMIEDPJ47 km308°(-3°)305°-3°302°+1°303°145 km/h
2EDPJEDNO76,5 km56,5°(-4°)51,5°-3°48,5°+1,5°50°172 km/h
3EDNOEDMI76,5 km201°(+6,5°)207,5°-3°204,5°-1,5°203°156 km/h

Flugzeit berechnen

Wie lange fliegen wir für unsere jeweiligen Streckenabschnitte? Wir kennen die Distanz, die wir aus der Karte abgelesen haben (Entf.) sowie die Geschwindigkeit, die wir gegenüber Grund zurücklegen.

Flugzeit = Entf. * 60 / GS

19,45min = 47 km * 60 min / 145 km/h


vonnachEntf.TCWCATHVARMHDEVCHGSZeit
1EDMIEDPJ47 km308°(-3°)305°-3°302°+1°303°145 km/h19,45 min
2EDPJEDNO76,5 km56,5°(-4°)51,5°-3°48,5°+1,5°50°172 km/h26,7 min
3EDNOEDMI76,5 km201°(+6,5°)207,5°-3°204,5°-1,5°203°156 km/h29,4 min
75,55min

Die gesamte Flugzeit ergibt sich aus der Summe aller Zeiten für alle Streckenabschnitte. 75,55min

Spritverbrauch berechnen

Nachdem wir wissen wie lange wir für einen Streckenabschnitt unterwegs sind und wir wissen welchen Stundenverbrauch unser Flugzeug hat können wir nun den Verbrauch pro Streckenabschnitt berechnen.

Verbrauch = lt/h * Zeit / 60

5,5l = 17 lt/h * 19,45 min / 60


vonnachEntf.TCWCATHVARMHDEVCHGSZeitVerbrauch
1EDMIEDPJ47 km308°(-3°)305°-3°302°+1°303°145 km/h19,45 min5,5l
2EDPJEDNO76,5 km56,5°(-4°)51,5°-3°48,5°+1,5°50°172 km/h26,7 min7,57l
3EDNOEDMI76,5 km201°(+6,5°)207,5°-3°204,5°-1,5°203°156 km/h29,4 min8,33l
75,55min21,4l

Die Summe aller Streckenverbräuche ist nun die Menge an Sprit, die wir für unseren Kurs benötigen werden.

Die Navigationsberechnung, die wir gerade gemacht haben ist die Grundlage für die weitere Flugplanung.

Die Navigation ist nicht nur für die theoretische Prüfung wichtig. Sie bestimmt am Ende in der Realität darüber ob Ihr zum Ziel kommt und dabei nicht unterwegs wegen Spritmangel in eine Notsituation kommt. Wenn die Berechnung für die Ground Speed nicht passt verfranzt ihr euch bei der terrestrischen Navigation weil die errechneten Zeiten der Legs in der Realität nicht hin kommen werden. Ihr werdet beim Fliegen regelmäßig mit Stift und Papier daheim oder am Flugplatz sitzen und eine Flugvorbereitung machen müssen. Sucht euch zum üben einen Partner der die gleiche Aufgabe parallel rechnet und vergleicht nach jedem Schritt die Ergebnisse und diskutiert diese bei Unstimmigkeiten. Arbeitet exakt und rundet nicht am Anfang schon großzügig auf oder ab. Ihr seht ja, wie viele Schritte notwendig sind bis am Ende ein Spritverbrauch heraus kommt.

Gefällt dir der Beitrag?

Schreibe dich in den Newsletter ein und bekomme in unregelmäßigen Abständen zusammenfassende Newsletter mit den neuesten Beiträgen. Ich halte es minimalistisch. Versprochen.

2 Kommentare

  1. […] eine Navigationsaufgabe im Detail abläuft habe ich hier bereits beschrieben. Für die Navigationsplanung sind die Windrichtung und die Windgeschwindigkeit […]

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert.

*